

SEMESTER: THIRD COURSE CODE: 301 NAME OF COURSE: COMPUTER ARCHITECTURE

SCHEME: Jul.09 PAPER CODE: **6344**

COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

RATIONALE

Diploma in Computer Hardware & maintenance. have to be conversant with computer, its terminology and functioning. Computer architecture is concerned with the structure and behavior of the various functional modules of the computer and their interaction, the course provides the necessary understanding of the hardware operation of digital computers..

SEMESTER: THIRD COURSE CODE: 301 NAME OF COURSE: COMPUTER ARCHITECTURE

SCHEME: Jul.09 PAPER CODE: **6344**

COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

SCHEME OF STUDIES AND SPECIFICATION TABLE

Lectures: **5** Hrs. per week

Sr. No.	TOPICS	THEORY (HRS)
1.	Computer Architecture	10
2.	Basic Computer Organization And Design	10
3.	Central Processing Unit	15
4.	Input Output Organization	15
5.	Memory Organization	14
6.	Advance Processor Architectures	11
	TOTAL	75

SCHEME OF STUDIES

SEMESTER: THIRD COURSE CODE: 301 NAME OF COURSE: COMPUTER ARCHITECTURE

SCHEME: Jul.09 PAPER CODE: 6344

COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

COURSE CONTENT

Lectures: 5 Hrs. per week

Sr. No.	COURSE CONTENT	
		of study
1	COMPUTER ARCHITECTURE	10
	Register Transfer and Micro operations, Register Transfer: Bus and Memory Transfers.	
	Three-State Bus Buffers, Memory Transfer.	
	Arithmetic Micro operations: Binary Adder, Binary Adder Subtractor, Half Adder and Full Adder Binary Incrementer.	
	Arithmetic Circuit, Logic Micro operations: List of Logic Micro operations, Hardware, Implementation.	
	Shift Micro-operations: Hardware Implementation	
2	BASIC COMPUTER ORGANIZATION AND DESIGN	10
	Instruction Codes: Stored Program Organization, Indirect	
	Address Computer Registers: Common Bus System, Computer	
	Instruction: Instruction Set Completeness Timing and Control	
	Instruction Cycle: Fetch and Decode, Type of Instruction, Register- Reference Instructions Memory-Reference Instructions: AND to AC, ADD to AC, Load to AC, Store to AC,	
	Branch Unconditionally, Branch and Save Return Address, ISZ, Control Flowchart Input-Output Configuration, Input-Output Instructions, Program Interrupt, Interrupt Cycle	
	Complete Computer Description, Design of Basic Computer: Control Logic Gates, Control of Registers and Memory, Control of Single flip-flops, Control of Common Bus	
	Design of Accumulator Logic: Control of AC Register, Adder and Logic Circuit, Character Manipulation, Program Interrupt.	

SEMESTER: THIRD SCHEME: Jul.09 COURSE CODE: 301 PAPER CODE: 6344 NAME OF COURSE: COMPUTER ARCHITECTURE COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE Lectures: 5 Hrs. per week

3	CENTRAL PROCESSING UNIT	15
	Introduction	
	General Register Organization: Control Word	
	Stack Organization: Register Stack, Memory Stack, Reverse Polish	
	Notation, Evaluation of Arithmetic Expressions	
	Instruction Formats: Three Address Instructions, Two Address	
	Instructions, One Address Instructions, Zero Address Instructions, RISC	
	Instructions	
	Addressing Modes	
	Data Transfer and Manipulation: Data Transfer Instructions, Data	
	Manipulation Instructions, Arithmetic Instructions, Logical and Bit	
	Manipulation Instructions, Shift Instructions	
	Program Control: Status Bit Conditions, Conditional Branch Instructions	
	Subroutine Call and Return, Program Interrupt, Types of Interrupts	
	Reduced Instruction Set Computer (RISC): CISC Characteristics, RISC	
	Characteristics, Overlapped Register Windows	
4	INPUT OUTPUT ORGANIZATION	
	Peripheral Devices: ASCII Alphanumeric Characters	
	Input-Output Interface: I/O Bus and Interface Modules, I/O Versus	15
	Memory Bus, Isolated versus Memory-Mapped I/O	
	Asynchronous Data Transfer: Strobe Control, Handshaking,	
	Asynchronous Serial Transfer, Asynchronous Communication Interface	
	First-In, First-Out, Buffer	
	Modes of Transfer: Interrupt-Initiated I/O, Software Considerations	
	Priority Interrupt: Daisy-Chaining Priority, Parallel Priority Interrupt,	
	Priority Encoder, Software Routines,	
	Direct Memory Access (DMA): DMA Controller, DMA Transfer	
	Input-Output Processor: CPU-IOP Communication	
	Serial Communication: Character-Oriented Protocol, Data Transparency	
	Bit-Oriented Protocol	

SEMESTER: THIRD COURSE CODE: 301 NAME OF COURSE: COMPUTER ARCHITECTURE SCHEME: Jul.09 PAPER CODE: 6344

COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

Lectures: 5 Hrs. per week

MEMORY ORGANIZATION	14
Memory Hierarchy	
Main Memory: RAM and ROM Chips, Memory Address Map, Memory	
Connection to CPU	
Auxiliary Memory: Magnetic Disks, Magnetic Tape, CD, DVD	
Associative Memory: Hardware Organization, Read	
Operation, Write Operation	
Cache Memory: Associative Mapping, Direct Mapping, Set-Associative	
Mapping, Writing into Cache, Cache Initialization	
Virtual Memory: Address Space and Memory Space, Address Mapping	
Advance Processor Architectures	11
Instruction Pipelining, Arithmetic Pipelining, Super Scalar Processors, VLIW	
Processors, Parallel Processing, Flynn's Classification of Parallel Processing,	
Vector Computers, Array Processors, Distributed Shared Memory Parallel	
Computers. Cluster of Workstations.	
	 MEMORY ORGANIZATION Memory Hierarchy Main Memory: RAM and ROM Chips, Memory Address Map, Memory Connection to CPU Auxiliary Memory: Magnetic Disks, Magnetic Tape, CD, DVD Associative Memory: Hardware Organization, Read Operation, Write Operation Cache Memory: Associative Mapping, Direct Mapping, Set-Associative Mapping, Writing into Cache, Cache Initialization Virtual Memory: Address Space and Memory Space, Address Mapping Advance Processor Architectures Instruction Pipelining, Arithmetic Pipelining, Super Scalar Processors, VLIW Processors, Parallel Processing, Flynn's Classification of Parallel Processing, Vector Computers, Array Processors, Distributed Shared Memory Parallel Computers. Cluster of Workstations.

SEMESTER: THIRD COURSE CODE: 301 NAME OF COURSE: COMPUTER ARCHITECTURE SCHEME: Jul.09 PAPER CODE: 6344

COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

Lectures: 5 Hrs. per week

BOOKS RECOMMANDED.

- 1. Computer Organization & Architecture by V. Rajaraman & T. Radha Krishnan, PHI Learning
- 2. Computer System Architecture by P.V.S. Rao, PHI Learning

REFERENCES

- 1. Morris Mano. M., Computer System Architecture, PHI Learning.
- 2. Tanenbaum, 5/e, Structured Computer Organisation, PHI Learning.
- 3. Hwang & Brigg, Advanced Computer Architecture, McGraw Hill .
- 4. Stallings, 4/e, Computer Organisation & Architecture.
- 5. Murdocca Computer Architecture & Organization Wiley India
- 6. ISRD group Computer Organization TMH
- 7. T.K. Ghosh, Computer Organisation & Architecture TMH

SEMESTER: THIRD COURSE CODE: 302 NAME OF COURSE: OPERATING SYSTEM

SCHEME: Jul.09 PAPER CODE: 6345

COMMON WITH PROGRAM (S):

RATIONALE

The heart of a computer is based around its Operating System. The processor deals with request Coming from all directions asynchronously. The operating system has to deal with the problems of Contention, resource management and both program and user data management, and provide a Useful no-wait user interface. The concept of Operating System is discussed through case studies of UNIX, LINUX, Windows Vista & Windows XP. The course provides clear vision, understanding and working of Operating Systems.

SEMESTER: THIRDSCHEME: Jul.09COURSE CODE: 302PAPER CODE: 6345NAME OF COURSE: OPERATING SYSTEMCOMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

SCHEME OF STUDIES AND SPECIFICATION TABLE

Lectures: **5**Hrs. per week Practical: **2** Hrs. per week

SCHEME OF STUDIES

		THEORY
Sr. No.	TOPICS	(HRS)
1.	Introduction to Operating System	10
2.	Process Management	20
3.	Memory Management	15
4.	File System	15
5.	Device Management	10
6.	Protection & Security	03
7.	Other Operation System	02
	TOTAL	75

Note: Case studies of UNIX, LINUX and Windows Vista & Windows XP have been included in the respective chapter.

SEMESTER: THIRDSCHEME: Jul.09COURSE CODE: 302PAPER CODE: 6345NAME OF COURSE: OPERATING SYSTEMCOMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

COURSE CONTENT

Lectures: 5 Hrs. per week

Sr. No.	Course Content	Hours of study
1.	INTRODUCTION TO OPERATING SYSTEM	10
	1.1 Basics of Operating System, its functions, Objectives and Types of operating System	
	1.2 Introduction of time sharing, real time, Parallel and Distributed Multiprocessor embedded O.S.	
	1.3 Structure of Operating System:- System components, Operating System services, System calls and Programs, System Structure.	
2.	PROCESS MANAGEMENT	20
	2.1 Concepts of Processes; Process state (state diagram), Process Scheduling & Process control block (PCB), Operation on Processes, Threads multiprocessor scheduler.	
	2.2 Process Scheduling & Algorithms- Basic Concepts, Scheduling criteria, Scheduling Algorithms- FCFS, SJF, Priority, RR, Multiple queues, Multiple processor Scheduling, Real time Scheduling.	
	2.3 Dead Locks - Basic Concept of deadlock, deadlock detection, deadlock prevention, deadlock Avoidance, recovery from deadlock & Banker's algorithm.	
3.	MEMORY MANAGEMENT	15
	3.1 Concept of Memory Management- Logical v/s Physical address, Cache Memory, Swapping, Allocation Techniques (contiguous and Non-contiguous), Fragmentation & Compaction.	
	3.2 Concepts of paging and segmentation - Paged Segmentation & Segmented Paging.	
	3.3 Concepts of Virtual Memory- Demand Paging, Page Fault, Page replacement and its Algorithms, Allocation of frames, Thrashing.	

SEMESTER: THIRD SCHEME: Jul.09 COURSE CODE: 302 PAPER CODE: 6345 NAME OF COURSE: OPERATING SYSTEM COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

4.	FILE I	MANAGEMENT SYSTEM	15
	4.1	File System interface: File Concepts, Types of Files, Access	
		Methods, Directory Structure, File System mounting, Protection.	
	4.2	File System Implementation: File System Structure, Allocation	
		Methods (Contiguous, Non Contiguous, index allocations), Free	
		space Management (Fragmentation & compaction). Directory	
		implementation. File- sharing, recovery, network file system, (NFS),	
		Efficiency and performance.	
5.	DEVI		10
•			
	5.1	Input Output System · I/O Hardware & Interface, Kernel I/O Sub	
	•••	System I/O request streams	
	52	Disk Management- Disk Structure Disk Scheduling and its	
	0.2	algorithms RAID TECHNOLOGY	
6	PROT	FCTION AND SECURITY	
0.	1.01		03
	61	Goal of Protection Domain of Protection Security Problems	00
	0.1	Authoritication	
7	Othor	Authentication.	02
7.	Other	Operation System	02
	74	Introduction to Natural Operation System (Only Priof Concept)	
	7.1	Introduction to Network Operation System (Only Brief Concept).	
	1.2	Introduction to Distributed Operation System (Only Brief Concept).	

SEMESTER: THIRD SCHEME: Jul.09 COURSE CODE: 302 PAPER CODE: 6345 NAME OF COURSE: OPERATING SYSTEM COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

LIST OF EXPERIMENTS

Practical: 2 Hrs. per Week

		HOURS OF
S.NO.	NAME OF EXPERIMENTS	STUDY
1	1. BIOS Configuration	10
	Installation of Various Operation System	
	a. Windows Vista	
	b. Windows XP	
	c. Linux	
	d. Unix	
2	File Management Commands, Use of Administration Commands, System	5
	Calls	
3	Simulation of CPU Scheduling Algorithms (FCFS, SJF, RR)	5
4	Simulation of Memory Allocation, Paging and fragmentation	5
5	Case study of UNIX, Linux, Windows Vista & Windows XP.	5
	TOTAL	30

SEMESTER: THIRD SCHEME: Jul.09 COURSE CODE: 302 PAPER CODE: 6345 NAME OF COURSE: OPERATING SYSTEM COMMON WITH PROGRAM (S): COMPUTER HARDWARE & MAINTENANCE

REFERENCES

TEXT BOOKS

- 1. Galvin, Operating Systems, Wiley Eastern.
- 2. Godbole A.S Operating Systems, TMH New Delhi.
- 3. Pal Chaudhury, Operating system, Principals & Design PHI Learning

REFERENCE BOOKS

- 1. Bach M.J., Design of the UNIX Operating System, PHI
- 2. Milankovic, Operating Systems, TMH
- 3. Ray Dunkan Advance Dos Programming, BPB.
- 4. Donovons & Mendric, Operating Systems, TMH.
- 5. William stalling Operating System, pearson edu.

SEMESTER: Third COURSE CODE: 303 NAME OF COURSE: DATA COMMUNICATION COMMON WITH PROGRAM (S):

SCHEME: Jul.09 PAPER CODE:6370

RATIONALE

This course will allow students to develop background knowledge as well as core expertise in data communication technologies, which is one of the fastest growing industries. It forms an integral part of the modern Information and Communications Technology. Principles of DC play an important role in designing any modern telecom infrastructure.

A growth of telecommunications and networking is a dramatic increase in the number of professions, where an understanding of DCN is essential for success. Today, students wanting to understand the concepts and mechanisms underlying DCN infrastructures come from a variety of academic and professional backgrounds.

The students will be exposed to communication principles, different types of media, modulation techniques, multiplexing, switched networks, wireless communication, fibre-optic Communications and the state-of-art networking applications.

At the end of the course the students would know:

- Evolution of data communication and networking paradigms
- Principles of data communication, channel characteristics, signalling, modulation and encoding, and multiplexing
- Various transmission media, their comparative study, fibre optics and wireless media Categories and topologies of networks.
- Layered architecture of OSI .
- Channel error detection and correction.
- Emerging technologies, such as mobile telephony etc.

SEMESTER: Third COURSE CODE: 303 NAME OF COURSE: DATA COMMUNICATION COMMON WITH PROGRAM (S): SCHEME: Jul.09 PAPER CODE: 6370

SCHEME OF STUDIES

Lectures: 5 Hrs. per week

Sr. No.	Topics	THEORY (HRS)
1	Data Communication Concept & Technology	12
2	Transmission Media	10
3	Modulation And Data Modems	12
4	Multiplexing, Spreading And Switching	15
5	Error Detection And Correction	10
6	Telephone And Cable Networks	8
7	Cellular And Satellite Networks	8
		75

SCHEME OF STUDIES

SEMESTER: Third COURSE CODE: 303 NAME OF COURSE: DATA COMMUNICATION COMMON WITH PROGRAM (S): SCHEME: Jul.09 PAPER CODE: 6370

COURSE CONTENT

Lectures: 5 Hrs. per week

S.No.		HOURS
	Course Content	OF STUDY
1	 DATA COMMUNICATION CONCEPT & TECHNOLOGY 1.1 Data Representation, Data Transmission. 1.2 Modes of Data Transmission- Analog Data, Digital Data, 1.3 Communication Channels, Synchronous & Asynchronous 1.4 Data & Communication, Series & Parallel data Communication, Bit rate and Baud rate, 	12
	1.5 Bandwidth & Channel Capacity, Nyquists and Shannon's theorems.	
2	TRANSMISSION MEDIA	10
	2.1 Transmission Line Characteristic, Liner Distortions, Crosstalk, Twisted Pairs Cable, Coaxial Cable, UTP, STP.	
	2.2 Optical Fibre – Multimode Fibres, Modal Dispersion, Mono Mode Fibre, Graded Index Fibres, Total Dispersion, Fibre Attenuation, Radio Media, UHF & Microwaves, Satellite Link, Equalization.	
3	MODULATION AND DATA MODEMS	12
	3.1 Concept of modulation and demodulation,	
	3.2 Digital modulation methods: PCM, Amplitude,	
	3.3 Shift-keying, Frequency Shift-keying,	
	3.4 Quadrature PSK (QPSK), Differential PSK (DPSK), Simplex, Half Duplex, Full Duplex	

SEMESTER: Third COURSE CODE: 303 NAME OF COURSE: DATA COMMUNICATION COMMON WITH PROGRAM (S): SCHEME: Jul.09 PAPER CODE: 6370

4	Multip	plexing, Spreading and Switching		15
	4.1	MULTIPLEXING: Frequency-Division Multiplexing, Wavelength- Div	vision	
		Multiplexing, Synchronous Time-Division Multiplexing, Statistical Division Multiplexing,	Time-	
	4.2	SPREAD SPECTRUM: Frequency Hopping Spread Spectrum (FI Direct Sequence Spread Spectrum.	HSS),	
	4.3	CHANNELIZATION: Frequency-Division Multiple Access (FDMA), Tir Multiple Access (TDMA), Code-Division Multiple Access (C	ne- Division DMA).	
	4.4	CIRCUIT-SWITCHED NETWORKS: Three Phases, Efficiency, De Switched Technology.	elay, Circuit-	
	4.5	DATAGRAM NETWORKS: Routing Table, Efficiency, Delay, Da Networks.	atagram	
	4.6	VIRTUAL-CIRCUIT NETWORKS: Addressing, Three Phases, Eff Delay in Virtual-Circuit Networks, Circuit-Switched Technology.	ficiency.	
	4.7	STRUCTURE OF A SWITCH: Circuit Switches, Packet Switches.		
5	Error	Detection and Correction		10
	5.1	INTRODUCTION: Types of Errors, Redundancy, Detection Ve	ersus	
		Correction, Forward Error Correction Reverse Error Correction	۱.	
	5.2	BLOCK CODING: Error Detection, Error Correction, Hamming Distance.	stance And	
	5.3	Liner Block Code, CRC, Checksum		
6	Telep	hone and Cable Networks		8
	6.1	TELEPHONE NETWORK: Major Components, topology, Signalling, Provided by Telephone Networks, echo & noise in transmission syst	Services em.	
	6.2	DIAL-UP MODEMS: Modem Standards, type of modems		
	6.3	DIGITAL SUBSCRIBER LINE: DSL, ADSL Lite, HDSL, SDSL, VE	DSL.	
7	Cellul	ar and Satellite Networks		8
	7.1	SATELLITE NETWORKS: Orbits, Footprint, Three Categories GEO Satellites, MEO Satellites, LEO Satellites.	of Satellites,	
	7.2	CABLE TV NETWORKS and DATA TRANSFER: Tradit Networks, Hybrid Fibre-Coaxial (HFC) Network, Bandwidth, Sharing.	ional Cable	
	7.3	CELLULAR TELEPHONY: Frequency-Reuse Principle, Receiving, Roaming, First Generation, Second Generation, Third Ge	Transmitting, eneration.	
	7.4	BLUETOOTH: Architecture, Bluetooth Layers		

SEMESTER: Third COURSE CODE: 303 NAME OF COURSE: DATA COMMUNICATION COMMON WITH PROGRAM (S):

SCHEME: Jul.09 PAPER CODE: 6370

RECOMMENDED BOOKS

TEXT BOOK

- 1. Behrouz A Forouzan, Data Communication and Networking, 4e, Tata McGraw-Hill, 2008.
- 2. William Stallings, Data and Computer Communications, 8e, Pearson Education, 2008.

REFERANCES

- **1.** Tomasi Wayne, Introduction to Data Communications and Networking, Pearson Education, 2007.
- **2.** Rajneesh Agrawal and Bharat Bhushan Tiwari, Data Communication and Computer Networks, Vikas Publishing house Ltd., 2005.
- **3.** S. Tanenbaum, Computer Networks, Fourth Edition, Pearson Education.
- 4. Leon-Gracia and I. Widjaja, Communication Networks, Tata McGraw Hill, 2004.
- 5. K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks, PHI Learning

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms

SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

RATIONALE

Data Structure & Algorithms is one of the key courses in computer programming. The course serves as the foundation upon which many other computer science fields are built. The knowledge of data structures is a must for any person, who wishes to work in design implementation, testing or maintenance of virtually any software system. The course gives clear idea about mapping various processes or operation into the algorithms. The same can be tested on paper for faithfulness, correctness, termination and complexity before coding it into any programming language. The subject is independent of programming language and is supported by many modern compilers.

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms

SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

SCHEME OF STUDIES AND SPECIFICATION TABLE

Lecturers: 5 Hrs. Weeks Practical: 4 Hrs. per Week

Sr. No.	TOPICS	THEORY (HRS)
1.	INTRODUCTION	5
2.	ARRAYS	8
3.	SYMBOL TABLES	5
4.	STACKS AND QUEUES	10
5.	LINKED LISTS	10
6.	SEARCHING AND SORTING ALGORITHMS	9
7.	TREES	10
8.	GRAPHS	10
9.	STORAGE MANAGEMENT	8
	TOTAL	75

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

COURSE CONTENT

Lecturers: 5 Hrs. Weeks Practical: 4 Hrs. per Week

Sr. No.		Course Content	Hours of
			Study
1.	INTRODUCTION		5
	1.1:	Introduction to algorithm design and data structure	
	1.2:	Top-down and bottom-up approaches to algorithm design	
	1.3:	Analysis of Algorithm, complexity measures in terms of time and	
		space	
	1.4:	Concept of Pointer Variable	
2.	ARRAYS		8
	2.1:	Representation of arrays : single and multidimensional arrays	
	2.2:	Address calculation using column and row major ordering.	
3.	SYMB	OL TABLES	5
	3.1:	Static symbol table.	
	3.2:	Hash tables, Hashing Techniques.	
	3.3:	Collision Handling Techniques	
4.	STAC	KS AND QUEUES	10
	4.1:	Representation of stacks and queues using arrays	
	4.2:	Type of queues-Linear queue, circular queue, De-queue	
	4.3:	Applications of stacks: Conversion form infix to postfix and prefix	
		expressions, Evaluation of postfix expression using stacks.	

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

COURSE CONTENT

Lecturers: 5 Hrs. Weeks Practical: 4 Hrs. per Week

Sr. No.		Course Content	Hours of
			Study
5.	LINKE	LINKED LISTS	
	5.1:	Singly linked list : operations on list	
	5.2:	Linked stacks and queues.	
	5.3:	Polynomial representation and manipulation using linked lists	
	5.4:	Circular linked lists.	
	5.5:	Doubly linked lists.	
	5.6:	Generalized lists.	
6.	SEAR	CHING AND SORTING ALGORITHMS	9
	6.1:	Searching Algorithm: Sequential search, binary searches, Indexed	
		search.	
	6.2:	Sorting Algorithm: Insertion sort, selection sort, bubble sort, Quick	
		sort, merge sort, Heap sort, Radix sort, Sorting on multiple keys.	
7.	TREE	6	10
	7.1:	Basics of Trees: Binary tree traversal methods, Preorder traversal, In-	
		order traversal, Post-order traversal,	
	7.2:	Representation of trees and its applications: Binary tree.	
	7.3:	Threaded binary trees.	
	7.4:	Binary Search Tree, Heap	
	7.5:	Height Balanced (AVL) Tree, B-Trees	
8.	GRAP	HS	10
	8.1:	Basics of Graphs	
	8.2:	Graph representation: Adjacency matrix, Adjacency lists.	
	8.3:	Minimum Spanning Trees, Prim's and Kruskal's Algorithm	
	8.4:	Traversal schemes: Depth first search, Breadth first search.	
	8.5:	Shortest path Algorithms: Single source shortest path, all pair shortest path.	

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms

SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

Sr. No.	Course Content	Hours of
		Study
9.	STORAGE MANAGEMENT	8
	9.1: Automatic List Management.	
	9.2: Reference Count Method.	
	9.3: Garbage Collection.	
	9.4: Automatic List Management.	
	9.5: Concept of Dynamic Memory Management	

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms

SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

LIST OF EXPERIMENT

Lecturers: 5 Hrs. Weeks Practical: 4 Hrs. per Week

Sr. No.	Course Content	
		Study
1.	Programme implementation for	15
	a) Reading and printing of single array and multidimensional array.	
	b) Matrix manipulation.	
	c) For one dimensional, 2D & 3D array.	
2.	Program implementation for creating, updating, deleting, traversing, searching and	20
	sorting of arrays, linear and circular link, lists, doubly link list, stacks and queues,	
	trees, post, prefix.	
3.	Program implementation for manipulation of strings and match algorithms.	15
	Program implementation for agency matrix, traversing and searching.	
4.	Program implementation for adjacency creating matrix tree.	10
	Total	60

Note: All Algorithms should be developed in C/C++

SEMESTER: THIRD COURSE CODE: 304 NAME OF COURSE: Data Structure & Algorithms

SCHEME: Jul.09 PAPER CODE: 6371

COMMON WITH PROGRAM (S):

REFERENCES

TEXT BOOKS:

- Sahani, Data structure & Algorithms, TMH.
- Langsam, Tenenbaum, Data Structure using C/C++, PHI Learning
- Data structure(schaum outline series) Indian edition, TMH

REFERENCE BOOKS:

- Drozdek Adams, Data Structures and Algorithms in C++, Vikas Publishing House Pvt. Ltd.
- Kunth D. E., Art of Computer Programming and Fundamentals of Algorithms, Vol.-I, Narosa.
- Kunth, Art of computer programming, Vol.-III, Sorting searching.
- Wirth Niklaus, Algorithm + Data = Program, PHI Learning
- Drozdek Adams, Data structures & Algorithms in Java, Vikas.
- Lipschutz, Data structure, Schaum out line series, TMH.
- Kruse, Leung & Tondo, Data structure & Program design in C, PHI Learning
- Kutti & Pandye, Data Structures in C++, PHI Learning
- Thomas A Staudish, Data Structure Techniques.
- Sanjeev Sofat, Data structure in C and C++, Khanna Book Publishing Co.
- Classic Data Structures by Debasis Samanta, PHI Learning.
- Shukla, Data structures using C & C ++ Wiley India
- Trimbloy, introduction to Data structures With application's TMH

SEMESTER: THIRD COURSE CODE: 305 NAME OF COURSE: Programming with C++ COMMON WITH PROGRAM (S): SCHEME: Jul.09 PAPER CODE:

RATIONALE

C++ is a powerful modern language that combines the power, elegance and flexibility of C and the features of object-oriented programming. With its object-oriented capabilities such as data abstraction, inheritance and polymorphism, C++ offers significant software engineering benefits over C. Programming pundits expect that C++ will replace C as a general-purpose programming language. C++ is the language of future

The key concepts of **Programming with C++** are introduced in this course. The Experimental portion continues the development of C and C++ from the Types and Object modules. The course will enable the student to acquire:

- Knowledge and understanding of the principles of C++ and appreciation of its benefits compared with other approaches.
- Ability to design with a method to support the process of object orientation.

SEMESTER: THIRD COURSE CODE: 305 NAME OF COURSE: Programming with C++ COMMON WITH PROGRAM (S): SCHEME: **Jul.09** PAPER CODE:

LIST OF EXPERIMENTS

Practical: 4 Hrs. per Week

	Name of Experiment	Hours of Study
1.	Problems involving sequence, selection and iteration.	2
2.	Small problems mainly computational to illustrate expression and operator	2
	precedence.	
3.	Programmes such as: GCD, Sum of series, Fibonacci Series, Even and Odd	6
	series, Finding root of a function, Sequence of a numbers, Checking prime	
	number, Largest among given number etc.	
4.	Problems relating to arrays: Print, Reverse, Sum, Maximum and Minimum,	6
	Insert and Delete elements etc.	
5.	Problems related to classes and objects.	4
6.	Problems to illustrate constructor & destructor.	4
7.	Problems related to inline functions.	4
8.	Problems related to friend functions.	4
9.	Problems related to operator overloading.	4
10.	Problems related to default arguments, function overloading, functions	8
	overriding.	
11.	Problems related to different types of inheritance.	8
12.	Moderately large function based problems for which the solutions should be	8
	represented by coordinating modules. Formatting a text, replacing a given word	
	in a text with another, counting the number of words, in a text.	
	Total	60

SEMESTER: THIRD COURSE CODE: 305 NAME OF COURSE: Programming with C++ COMMON WITH PROGRAM (S): SCHEME: Jul.09 PAPER CODE:

REFERENCES

TEXT BOOKS

- Balguruswamy E. (2001), Object-Oriented Programming with Turbo C++, 3rd edition, TMH.
- Lafore Rober, 2001), Object-Oriented Programming in Turbo C++, 3rd edition, Galgotia Publications.
- M. kumar, programming with C ++,

REFERENCE BOOKS

- Shukla, object oriented programming in C++, wiley India.
- Stevens, Teach Yourself C++, BPB
- Schildt H, 1997, C++ Complete Reference, TMH
- Kanetkar Y, Programming in C++ ,BPB.
- Mahapatra P.B, Thinking in C++, Khanna Publisher.
- Bruce Euckel , Thinking in C++.
- Introduction to object oriented programming in C++,TMH ISRD group

SEMESTER: THIRD COURSE CODE: 306 NAME OF COURSE: Visual Basic Programming SCHEME: Jul.09 PAPER CODE:

COMMON WITH PROGRAM (S):

Practical: 4 Hrs. per week

RATIONALE

Visual Basic is a leading edge GUI based language because of even driven and object based programming language that will be immediately useful to students as they leave the institutional environment. It is introduced in this semester as students with little or no programming experience can develop smart systems satisfying professional needs. VB platform provides heavy duty, highperformance, capabilities needed for enterprise system development.

SEMESTER: THIRD COURSE CODE: 306 NAME OF COURSE: Visual Basic Programming

SCHEME: Jul.09 PAPER CODE:

COMMON WITH PROGRAM (S):

Practical: 4 Hrs. per week

Sr No	Particulars	Hrs of Study
1	Introductory Part	
	 Knowledge of IDE of VB, Menu Bar, Tool Bar, Project Explorer, Tool Box, Properties Window, Form Designer, Form Layout, Immediate Window. Concept of Event Driven Programming. Customizing the environment: Editor Tab, Format Tab, General Tab, Docking Tab, and Environment Tab. Working with From: Loading, Showing & Hiding Form. Controlling one form from another. 	
2	Practical Part	20
	Experiments based on:	
	 Data types of VB. Control Flow Statements and conditional Statements. Array and types of Arrays. Designing Menus and Pop-Up Menus. Use of MsgBox & InputBox. VB Controls. Control Arrays & Collections. Procedures, Subroutines & Functions. Graphics with VB. MDI 	
3	Application Development Using VB Like:	25
	 Exam System Library System Banking System Hospital System Inventory & Stock System Small Gaming Programme. Student Record System 	
	Total	60

SEMESTER: THIRD COURSE CODE: 306 NAME OF COURSE: Visual Basic Programming

SCHEME: Jul.09 PAPER CODE:

COMMON WITH PROGRAM (S):

Practical: 4 Hrs. per week

REFERENCES

REFERENCE BOOKS:

- 1. Visual Basic 6 by Deitel & Deitel Nietro, Person Education.
- 2. Programming with Visual Basic 6.0 Mohammed Azam, Vikas Publication.
- 3. Visual Basic 6 from the ground up, gary cornell, TMH
- 4. Visual Basic 6 in easy steps T.M Andercon willey India

